# Algorithm: MCQ Set – 06

#### Q51: Longest Common Subsequence Problem can be optimally solved by

• (A) Greedy Method
• (B) Divide & Conquer
• (C) Dynamic Programming
• (D) None of these

• (A) A1
• (B) A2
• (C) A3
• (D) A4

#### Q53: Worst case Time Complexity of Merge Sort is

• (A) O(n2)
• (B) O(n log(n) )
• (C) O(2 log(n) )
• (D) O(n2 log(n) )

#### Q54: Dynamic Programming Method is not suitable to solve

• (A) 0/1 Knapsack Problem
• (B) Making Change Problem
• (C) Binomial Co-efficient
• (D) Fractional Knapsack Problem
• (A) To find Longest Path
• (B) To find Shortest Path
• (C) To find Minimum Spanning Tree
• (D) To find a Cycle

#### Q56: A sorted array in ascending order is

• (A) MAX Heap
• (B) MIN Heap
• (C) Not a Heap Tree
• (D) None of these

#### Q57: f(n) = Ω (g(n) ) is

• (A) g(n) is asymptotic upper bound for f(n)
• (B) g(n) is asymptotic tight bound for f(n)
• (C) g(n) is asymptotic lower bound for f(n)
• (D) None of these

#### Q58: Following Problem(s) is NP Complete

• (A) Vertex Cover
• (B) SAT(Satisfiable)
• (C) K-Colouring
• (D) All of these

#### Q59: An algorithm is made up of two independent time complexities f (n) and g (n). Then the complexities of the algorithm is in the order of

• (A) f(n) x g(n)
• (B) Max ( f(n),g(n))
• (C) Min (f(n),g(n))
• (D) f(n) + g(n)

• (A) Array