# What is Crisp Set?

## Introduction to crisp set

Crisp set is a collection of **unordered distinct **elements, which are derived from a Universal set. A Universal set consists of all possible elements which take part in any experiment. A set is a quite useful and important way of representing data.

Let X represents a set of natural numbers, so

X = {1, 2, 3, 4, âĻ}

Sets are always defined with respect to some universal set. Let us derive two sets A and B from this universal set X.

A = Set of even numbers = {2, 4, 6, âĻ}

B = Set of odd number = {1, 3, 5, âĻ}

Elements in the set are **unique**, i.e. A = {1, 1, 2, 2, 3, 3}, B = {1, 2, 3}, C = {1, 2, 2, 3, 3, 3} all are the same.

**The order of elements **in the set is not important, i.e. A = {1, 2, 3}, B = {2, 1, 3}, C = {3, 1, 2}, all correspond to identical set.

The element of the set is called a **member of the set. If any element is present in the set then it is considered a member of the set otherwise it is not a **member. In a crisp set, there is no concept of partial membership. Element is either fully present in the set or it is fully outside the set.

A crisp set is very important to model or represents many real-world entities, such as a set of boys, a set of books, a set of elements, a set of employees, a set of colours etc.

The membership function can be used to define a set A given by

\[ \chi_{A}(x) = \begin{cases} 1, & if x \in A \\ 0, & if x \notin A \end{cases} \]

The function Ī ( read as ‘*chi*‘ ) is known as the crisp **membership function**, which assigns membership value to the element of the universal set based on certain properties.

## Examples of crisp set

Let us discuss an example of a crisp set.Â consider X represents a class of students which acts as the Universe of discourse.Â If you ask the question, *“who does have a driving license?”*Â Obviously, all students might not have a driving license. So those students who have a driving license will have a membership value of 1 for this particular set and the rest of them will have a membership value of zero.

We can define set A as equal to the set of students having driving licenses and A will be definitely a subset of universal set X

The best example of crisp set representation is the number system in mathematics, where,

- N: Set of natural numbers
- R: Set of real numbers
- Z: Set of integers
- Q: Set of rational numbers

## Notations used in Crisp Set

We will discuss the various set notations with respect to the following sets:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A = {2, 4, 6, 8, 10}

B = {1, 3, 5, 7, 9}

C = {4, 6, 8}

D = {x | x is perfect square and x > 10} = ÎĻ

Various notations used in set theory are defined below:

- ÎĻ:
**Empty set**is represented by the symbol, ÎĻ is a set which does not have any element in it. For given data, D = ÎĻ - x â A represents element x is a
**member**of set A. For given data, 2 â A - x â A represents an element x that is
**not a member**of set A. For given data, 3 â A - A â B represents every element of set A that is present in set B as well. In other words, A is a
**subset**of B. For given data, A â X - A â B represents every element of B is a member of set A as well. In other words, A is a
**superset**of B. For given sets, A â C - A â B represents every element of A in B as well as B has some additional element which is not in A. This notation says that A is a
**proper subset**of B. - A â B represents all the elements of B in set A as well as A has some additional element which is not in B. This notation says that A is a
**proper superset**of B. - if set A and B are identical then we can say A is a subset of B or B is a subset of A, but we cannot say that A is a proper superset of B or A is a proper subset of B
- A = B represents
**Equal sets**, i.e. sets A and B have identical elements - A â B represents
**Not equal sets**, i.e. sets A and B have different elements. For given sets, A â B - |A| represents the
**Cardinality**of set A (i.e. a number of elements in set A). For given sets, |A|= 5 - p(A) represents the
**Power set**of set A. For the given sets, p(c) = { ÎĻ, {4}, {6}, {8}, {4, 6}, {4, 8}, {6, 8}, {4, 6, 8} } - |p(A)|: 2
^{|A|}, i.e. power set of any set contains 2^{n}elements.

## Watch on YouTube

A crisp set is very convenient to represent and process the data. Many programming languages including Python, R etc. support the creation and manipulation of sets.

## Venn diagram representation of sets

Sets and set operations are often represented using a **Venn diagram**, which is a graphical representation of the interaction between sets. Let us try to understand it with an example. Assume the use case of some universities having 100 students. To form the team for inter-college sports tournaments, the interests of the students were collected and we got the following responses. Out of 100 students,

- 60 students were interested in football only
- 50 students were interested in cricket only
- 45 students were interested in volleyball only
- 30 students were interested in football and cricket both
- 50 students were interested in volleyball and cricket both
- 20 students were interested in football and volleyball both
- 5 students were interested in all three games

This fact can be easily and elegantly represented by the Venn diagram as shown below, where each circle corresponds to one set. Their overlapping shows the intersection of respective sets. Graphical representation is easy to understand and quick to analyze compared to its counter-textual representation.

Suggested Reading: Operations on crisp set

## Test Your Knowledge:

X = {1, 2, 3, 4, …, 20}

A = Set of a perfect square

B = Set of odd numbers

C = Set of numbers which are divisible by 3

D = Set of numbers which are divisible by 6

For the above-given sets, answer the following:

- Find the pair of sets which are subset and superset of each other
- Is D a subset of A
- Find the power set of set C
- Is set C a subset of set B?
- Is A subset of C?

**Please post your answers/queries in the comment box below!**

Thank you sir for sharing this info on this platform as well

My pleasure

Introduction to Crisp set cannot be more simpler. The Ven diagram made it much easier to understand the topic. Thank you very much. Looking forward for more such topics.

Thanks for your words. More topics are in pipeline

A={1,4,9,16}

B={1,3,5,7,9,11,13,15,17,19}

C={3,6,9,12,15,18}

D={6,12,18}

D is the subset of C

Perfect

Dear Sir, but 5 is also not belong A why you just take 3?

Thank you

Dear Amri, that is just one example dear. There are infinite elements which are not in A. 3 is shown just to show the notation. Hope you got it.

OK thank you. I think you used an X as a universal set so you must mention for all numbers except 2, 4, 6, 8, 10. Am I right?

2.false.

4.false.

5.false.

D subset of C